

ROCKSENSOR AUTOMATION

RF3800 SeriesOval Gear Flowmeter

Introduction

Oval Gear Flowmeter is a volumetric meter for continuous or intermittent measurement and control of liquid flow in a pipeline. It has a large range, high accuracy, small pressure loss, strong viscosity adaptability. It can measure high viscosity liquid at high temperature. It is convenient to calibrate and install. These flowmeters are suitable for flow measurement in petroleum, chemical, fiber, transportation, food, medicine and health industries.

The RF3800 Series Oval Gear Flowmeter is equipped with a pointer and character wheel accumulation device which can directly display the liquid flow and instantaneous flow through the pipeline on site. The additional signaling device and electric display instrument in the counting mechanism can realize the centralized control of quantitative and instantaneous flow with remote transmission. Install a radiator or ellipsoidal tooth to measure high temperature and high viscosity liquid.

The flowmeter body is made of different materials as per their suitability to different liquids such as acid, alkali, salt, organic solution, etc.

Technical Specifications

Low Viscosity Oval Gear Flowmeter

• Low viscosity oval Gear Flowineter						
Flowmeter MOC		Cast Iron RF3800-A	Stainless Steel RF3800-B		Cast Steel RF3800-E	
Nominal Pressure, Mpa		1.6	1.6, 2.5		1.6, 2.5, 4.0, 6.3	
Temperature Range, °C	-20 ~ +80° C, +100 ~ +200° C			С		
Accuracy	0.5%					
Flow Range, m ³ /h						
Line Size, mm		Measuring Liquid Viscosity, mPa.s				
Line Size, mm		0.16 - 2		2 - 200		
10		0.16	~ 0.4	$0.08 \sim 0.4$		
15		0.6 ~	~ 1.5		0.3 ~ 1.5	
20		0.75	5 ~ 3		0.6 ~ 3	
25		1.5	5 ~ 6		0.8 ~ 6	
40		5 ~	~ 15		3 ~ 15	
50		6 ~	24 4 ~ 24		4 ~ 24	
65		8 ~	8 ~ 40		8 ~ 40	
80 (Light)		8 ~ 40		8 ~ 40		
80 (Heavy)		15 ~60		10 ~ 60		
100		30 ~ 100		15 ~ 100		
150		45 ~ 190		34 ~ 190		
200		68 ~ 340		56 ~ 340		

· High Viscosity Oval Gear Flowmeter

nigh viscosity oval dear riowhieter						
Flowmeter MOC		Cast Iron Stainless Stainl			Cast Steel RF3800-NE	
Nominal Pressure, MPa	1.6		1.6, 2.5		1.6, 2.5, 4.0, 6.3	
Temperature Range, °C		-20 ~ +80° C, +100 ~ +200° C				
Accuracy	0.5%					
Flow Range, m ³ /h						
Lina Siza mm	Liquid Viscosity, mPa.s					
Line Size, mm		200 -	1000		1000 - 2000	
10		0.04	$0.03 \sim 0.3$		$0.03 \sim 0.2$	
15		0.2	~ 1.0 0.1 ~ 0.7		$0.1 \sim 0.7$	
20		0.4	0.4 ~ 2.1		0.25 ~ 1.5	
25		0.8	.8 ~ 4.2		0.6 ~3	

www.rocksensor.in 1

40	2.1 ~ 10.5	1.0 ~ 7.5		
50	2.4 ~ 16.8	2 ~ 12		
65	5.6 ~ 28	4 ~ 20		
80 (Light)	5.6 ~ 28	4 ~ 20		
80 (Heavy)	6 ~ 42	6 ~ 30		
100	14 ~ 70	10 ~ 50		
150	27 ~ 133	19 ~ 95		
200	48 ~ 238	34 ~ 170		

High-Precision Oval Gear Flowmeter							
Flowmeter MOC		Cast Iron RF3800-A	Stainless Steel RF3800-B		Cast Steel RF3800-E		
Nominal Pressure, Mpa	Iominal Pressure, Mpa		1.6, 2.5		2.5, 4.0, 6.3		
Temperature Range, °C		-10 ∼ +60° C					
Accuracy		0.2%					
Flow Range, m ³ /h							
Lina Siza mm		Measuring Liquid Viscosity, MPa.s					
Line Size, mm		0.16 - 2		2 - 200			
10		Inquiry		$0.2 \sim 0.4$			
15		Inquiry		0.3 ~ 1.5			
20		1.5 ~ 3		1.2 ~ 3			
25		3 ~ 6		1.6 ~ 6			
40		8 ~ 15		6 ~ 1 5			
50		12 ~ 24		8 ~ 24			
65		20 ~ 40		13 ~ 40			
80 (Light)		20 ~ 40		13 ~ 40			
80 (Heavy)		30 ~60		20 ~ 60			
100		50 ~ 100		30 ~ 100			
150		90 ~ 190		68 ~ 190			
200		170 ~ 340			112 ~ 340		

With Digital LCD display

With Analog display

www.rocksensor.in 2

These Field Instruments are suitable for measurement & control of various parameters in the industrial process conditions such as Pressure, Flow, Density, Level & Temperature and gas & liquid analysis. These products find widespread applications in Oil & Gas, Petrochemical, Power, Cement, Metal & Mining, Water, Food & Beverages, Pharmaceuticals, Glass, Engineering and various other industries.

As a responsible and an industry key player, RKS is committed to provide excellent & reliable products, technical services and support in the field of automation to the Customers all over the world.

